Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction.
نویسندگان
چکیده
Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermediates, which redox cycle, generating more reactive oxygen species (ROS) than a divalent chromate reducer, YieF. However, NfsA generates less ROS than a known one-electron chromate reducer, lipoyl dehydrogenase (LpDH), suggesting that NfsA employs a mixture of uni- and di-valent electron transfer steps. The presence of YieF, ChrR (another chromate reductase we previously characterized), or NfsA in an LpDH-catalysed chromate reduction reaction decreased ROS generation by c. 65, 40, or 20%, respectively, suggesting that these enzymes can pre-empt ROS generation by LpDH. We previously showed that ChrR protects Pseudomonas putida against chromate toxicity; here we show that NfsA or YieF overproduction can also increase the tolerance of E. coli to this compound.
منابع مشابه
Vibrio harveyi nitroreductase is also a chromate reductase.
The chromate reductase purified from Pseudomonas ambigua was found to be homologous with several nitroreductases. Escherichia coli DH5alpha and Vibrio harveyi KCTC 2720 nitroreductases were chosen for the present study, and their chromate-reducing activities were determined. A fusion between glutathione S-transferase (GST) and E. coli DH5alpha NfsA (GST-EcNfsA), a fusion between GST and E. coli...
متن کاملEffect of chromate stress on Escherichia coli K-12.
The nature of the stress experienced by Escherichia coli K-12 exposed to chromate, and mechanisms that may enable cells to withstand this stress, were examined. Cells that had been preadapted by overnight growth in the presence of chromate were less stressed than nonadapted controls. Within 3 h of chromate exposure, the latter ceased growth and exhibited extreme filamentous morphology; by 5 h t...
متن کاملChromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excess...
متن کاملEvaluation of Class II Chromate Reductases and their Bioremediation Potential
Microbial bio-reduction to Cr(III) is a promising strategy for detoxification of chromate, a prevalent anthropogenic pollutant. We propose that this activity can be enhanced in bacteria through engineering of soluble enzymes, such as NfsA, the model Class II chromate reductase of Escherichia coli. We show here that nfsA is induced by chromate, and that it reduces this compound by a “semi-tight”...
متن کاملProoxidant cytotoxicity of chromate in mammalian cells: the opposite roles of DT-diaphorase and glutathione reductase.
The geno- and cytotoxicity of chromate, an important environmental pollutant, is partly attributed to the flavoenzyme-catalyzed reduction with the concomitant formation of reactive oxygen species. The aim of this work was to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) and glutathione reductase (GR, EC 1.6.4.2) in the mammalian cell cytotoxicity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2004